UH
iii
{2 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Bachelorthesis

Optimization of the Quantum Espresso
Density Functional Theory Code for

parallel execution on the
PHYSnet-Cluster

Optimierung des Quantum Espresso Dichte-Funktional Theorie
Codes fiir die parallele Ausfithrung auf dem PHY Snet-Cluster

vorgelegt von

TJARK SIEVERS

Fakultat: Mathematik, Informatik und Naturwissenschaften
Fachbereich: Physik

Studiengang: Physik

Matrikelnummer: 7147558

Erstgutachter: Prof. Dr. Tim Wehling

Zweitgutachterin: Prof. Dr. Daria Gorelova

Kurzzusammenfassung

Diese Arbeit untersucht QUANTUM ESPRESSO, eine Sammlung von Programmen fiir Berech-
nungen von elektronischen Strukturen und Modellierung von Materialien in Bezug auf seine
Skalierbarkeit tiber mehrere Prozessoren auf dem PHYSnet Rechencluster. Die Methode
ist eine Reihe an Benchmarks zum Testen von verschiedenen Compiler Kombinationen und
den Parallelisierungsoptionen von QUANTUM ESPRESSO. Diese Benchmarks zeigen, dass
die Nutzung von Compilern in Intel oneAPI die Skalierbarkeit signifikant verbessert, mit
bis zu dreimal schnelleren Rechnungen auf einem Rechnerknoten. Auflerdem ermoglicht die
Nutzung der Parallelisierungsoptionen von QUANTUM ESPRESSO die Rechnungen weit iiber
einen Rechnerknoten hinweg ermdglichen, wenn sie richtig genutzt werden. Ergebnisse aus
den Benchmarks wurden auflerdem genutzt, um effiziente Phononen Rechnungen von TaS,
in einer Ladungsdichtewellephase duchzufiihren, deren Ergebnisse moglicherweise eine Liicke
um das Fermi-Niveau zu erkldren, die 2019 in einem Scanning Tunneling Spectroscopy (STS)
Experiment an diesem Material [1] gefunden wurde.

Abstract

This thesis examines QUANTUM ESPRESSO, a suite of computer code for electronic-structure
calculations and materials modeling in terms of its scalability on multiple processors on the
PHYSnet compute cluster. A series of benchmarks is carried out to test different combination
of compilers as well as parallelization parameters offered by QuanTUuM ESPRESSO itself.
These benchmarks show that using a set of compilers and auxiliary code in Intel oneAPI
significantly improves scaling, with up to three times faster calculations on a single compute
node. Furthermore, the parallelization parameters offered by QuanTUM ESPRESSO let
calculations scale beyond a single node when used right. Results from these benchmarks were
then used to carry out efficient phonon calculations on TaS; in a charge-density-wave phase,
the results of which could explain a gap feature near the Fermi level observed in a 2019 STS
experiment on this material [1].

Contents

Motivation

I Ab initio methods for materials modeling

I1

1.2

Density Functional Theory
[.1.1 Hohenberg-Kohn theorems
[.L1.2 Kohn-Sham equations
[.1.3 Pseudopotentials and basis set
Density Functional Perturbation Theory
[.2.1 Sternheimer equation and Hellman-Feynman theorem
[.2.2 Lattice vibrations from electronic structure
[.2.3 Density Functional Perturbation Theory

II Computational Details

II.1
11.2

1.3

Parallel computing and scalability
QuanTuM ESPRESSO
I1.2.1 Compilation of QuanTuM ESPRESSO
I1.2.2 Parallelization capabilities implemented in QUANTUM ESPRESSO . . .
[1.2.3 Evaluating the scalability of QUANTUM ESPRESSO calculations
Hardware configuration of the PHYSnet cluster

ITIT Examined systems
IIL.1 Silicon e e e e e
TIL.2 TaSo . . . o o

II1.2.1 Charge-density waves
I11.2.2 Computational parameters

IV Parallelization of electronic-structure calculations
IV.1 First scaling tests L e
IV.2 Testing different compilers and mathematical libraries
1V.3 Using the parallelization parameters of QuaNnTUM ESPRESSO

IV.3.1 k point parallelization
IV.3.2 Linear-algebra parallelization

IV.4 Comparison with calculations on the HLRN cluster
IV.5 Conclusion: Parameters for optimal scaling

V Parallelization of phonon calculations

V.1

Optimal parallelization parameters for phonon calculations
V.1.1 k point parallelization
V.1.2 Linear-algebra parallelization
V.1.3 Image parallelization L o

11
11
13
13
15
16
17

19
19
19
19
20

23
23
26
30
30
33
33
37

39
39
39
41
41

iii

Contents

V.2 Phonon calculations on TaSy
V.3 Conclusion: Parameters for optimal scaling

VI Phonon mediated tunneling into TaS,
VI.1 Amplitude mode in TaSy charge density wave
VI.2 Phonon mediated tunneling into Graphene
VI.2.1 Scanning Tunneling Spectroscopy
VI.2.2 Phonon mediated tunneling into Graphene
VI.3 Phonon mediated tunneling into TaSs

VII Conclusion
Bibliography

Acknowledgement

iv

45
45
45
45
46
47

49

51

55

Glossary

Glossary

BLAS (Basic Linear Algebra Subprograms) specification for routines that provide standard
building blocks for performing basic vector and matrix operations. v, 14, 26

CPU time Time spent by a process on the supposed purpose. 16, 17
FFT (Fast Fourier Transform) Algorithm computing discrete Fourier transforms. 5, 14

Intel oneAPI Intel implementation of the oneAPI specification, providing among others MPI
with C/Fortran compilers, implementations of the BLAS and LAPACK/ScaLAPACK
APIs all optimized for Intel processors. i, 14, 26-34, 37, 40-42, 49

LAPACK (Linear Algebra Package) software package for solving systems of simultaneous linear
equations, least-squares solutions of linear systems of equations, eigenvalue problems,
and singular value problem, using the BLAS routines. v, 14, 26

MPI (Message Passing Interface) communication protocol for programming parallel computers.
v, 14, 26, 34

OpenBLAS Open source implementation of the BLAS and LAPACK APIs. 14, 26, 27
OpenMPI Open source MPI implementation. 14, 23-31, 49

ScaLAPACK (Scalable LAPACK) Implementation of a subset of LAPACK routines intended
to use the advantages of running on parallel machines. v, 14, 16, 26, 27

wait time Time a process spent waiting while other processes run on the CPU. 16, 17, 23
wall time Real time elapsed between the start and end time of a process. 16, 17, 23, 31, 39
Acronyms

DFPT Density Functional Perturbation Theory. 5, 8
DFT Density Functional Theory. vii, 1-3, 5, 8, 19, 46

KS Kohn-Sham. 3, 4, 8, 9, 15, 16, 27, 33
PP Pseudopotentials. 5, 19, 21

STM Scanning Tunneling Microscope. 45, 46
STS Scanning Tunneling Spectroscopy. i, 46, 47, 49

TMDC Transition Metal Dichalcogenide. vii, 19

Motivation

For a realistic description of matter, methods derived from first principle (so called ab-initio
methods) are needed. Phenomena explainable from ab initio methods span from thermody-
namics properties of matter to superconductivity. The former deals with the description of
quasi-particles emerging from the quantization of vibrational modes and the latter still lacks a
theory explaining all kinds of known superconductivity.

One such ab-initio method is Density Functional Theory (DFT), the foundations of which
were laid in 1964 by Hohenberg and Kohn [2], and in 1965 by Kohn and Sham [3]. Since 1990,
methods within the density functional formalism have been very successful across a number
of disciplines in physics, chemistry and biology, with over 160000 publications on the topic
between 1990 and 2015 [4]. The appeal of DFT methods lies in the fact that the complexity of
calculations is reduced in such a way that objects such as the full wave function cannot be
computed, total energies are very reliably produced, which in turn enables calculations of lattice
dynamics, thermodynamical properties of matter or chemical reactions. These calculations
are computationally cheap in comparison to methods working with full wave functions, so
that simple systems can be simulated on a home computer today. In software suites such as
QuanTuM ESPRESSO [5, 6] DFT methods are easily available today.

Going beyond simple calculations of a few atoms and towards current research questions makes
parallel calculations over multiple nodes on compute cluster with hundreds or thousands of
CPUs the only feasible possibility. An important step therefore is to guarantee that the process
of scaling the work across multiple processors is done in an effective manner to utilize available
computing resources as efficiently as possible.

Thus, the task of this thesis was two-fold: First, examining the way QUANTUM ESPRESSO
calculations are best parallelized on the PHYSnet cluster and then using this knowledge to
run calculations for a system of current interest and relate to recent experimental data of this
system [1].

The examined system is TaSs, a Transition Metal Dichalcogenide (TMDC). As bulk structures,
TMDCs have been first described in 1923 by Dickinson and Pauling [7], in 1969 Wilson et al.
characterized over 60 TMDCs. The more recently discovered monolayers of TMDCs [8] have
brought a new focus on these materials, as they are among the candidates for materials enabling
controllable electronic quantum phases [9]. TaSs in particular is notable as a superconducting
material, both in the bulk and the monolayer case. Furthermore, both bulk and monolayer
TaS, form a charge density wave (a periodic modulation of the electronic charge density of a
solid) at low temperatures [1]. This particular phase of monolayer TaSs is an active area of
research and will be examined in this thesis.

The structure of this thesis is as follows: first, all relevant theory needed to understand
the calculations made with QuANTUM ESPRESSO will be outlined in chapter I. Following
that, details regarding the computational work done, such as the concrete metrics evaluating

vii

Motivation

performance as well as a description of the parallelization parameters offered by QUANTUM
ESPRESSO will be presented in chapter II. In chapter III, a overview over the examined
systems is given. Chapter IV examines scalability of the PWscf module, which enables electronic
structure calculations, the same is done in chapter V for the PHonon module, which is used for
calculation of phonon and phonon related properties. The results from these chapters are then
used to run an optimized phonon calculation on TaSs in the charge-density-wave phase. This
optimized phonon calculation is then the foundation for a possible explanation of experimental
data on TaS, in chapter VI.

Conventions

Throughout the text of this thesis scalars are written in italic s, and vectors in bold italic
v. Furthermore, Hartree atomic units are used in general and only in selected instances it is
deviated from this: i =m, =e =47/c, = 1.

viii

I Ab initio methods for materials
modeling

The description of matter by theoretical methods starts from the Hamiltonian of an interacting
system of electrons and nuclei (with electronic coordinates r; and nucleic coordinates R,,)

H=T.4+Uec+Tyh+ Vet Wn_n (L1)
1 1 1 1 YA
= — fV?—Ff + = _ZefB (19
IR DM e TR AR I s AREIIL e 7 I
) 1#] a?éﬁ
where

. T, ,Tn are the kinetic energies of the electrons and nuclei respectively,
o Ae,e is the Coulomb interaction between electrons,

ane is the Coulomb interaction between electrons and nuclei,

. Wn,n is the Coulomb interaction between nuclei.

This very general problem consisting of both the electronic and nucleic degrees of freedom
can be simplified in a first step by employing the Born-Oppenheimer approximation [10]. The
approximation assumes the nuclei to be fixed point charges which create a potential for the IV
interacting electrons, so that the electronic part can be solved independently using the nuclei
positions as a parameter

]:IBO = Te + Ue—e + Vn—e + I/T/m—n (13)

1 1 1 Z YA
SR N V4 2 M= N o b 1.4
N R S SEE P TR

The terms V,,_. and W,_,, here are just a function of the electronic coordinates r and a
constant respectively. Hence they can then be combined into a potential V'(7) for the interacting
electrons and the Hamiltonian reads

H=T+U+V. (15)

I.1 Density Functional Theory

Obtaining solutions to the Schrodinger equation with the Hamiltonian 1.4 is analytically
infeasible, as it produces a system of 3IV coupled differential equations, with N ~ Nayogadro ~
©O(10%%). As such, the need for good approximations to obtain results for real world systems
is high. One particularly successful approach is Density Functional Theory (DFT). In the

I AD initio methods for materials modeling

following section, the theoretical framework of DFT will be reviewed following the PhD thesis
of Nicola Marzari [11], a more extensive discussion can be found in Richard Martins textbook
on electronic structure [12].

1.1.1 Hohenberg-Kohn theorems

The start for DFT is the exact reformulation of the electronic structure problem by Hohenberg
and Kohn. This reformulation uses the ground state density of the electronic system ng(r) as
the basic variable. To achieve this, Hohenberg and Kohn formulated two theorems [2], which
demonstrate that the ground state properties of an electronic system can be described using
the ground state density (the proof of those theorems is omitted here, but can be found in the
original publication [2] or the textbook by Martin [12, chapter 6.2]):

I The external potential is a unique functional of the ground state density.
IT The ground state energy minimizes the energy functional,

E[n(r)] > Eo ¥ n(r) # no(r).

These theorems proof the existence and uniqueness of the energy functional E[n(r)], but a
concrete expression for it cannot be given. As the ground state wave function is a functional
of the ground state density, a formal definition of the energy functional can be written as

Eln(r)] = (#|H|?)
= (W|T + U + V@)

= <LP|T+U|M7>+/dr’u7*(r’)V(r’)Ll7(r’).

Here, |¥) is the full many-body state of the system at hand. Defining the universal functional
Fin(r)] = (¢|T + U|¥), which is material independent and writing n(r’) = &*(r")¥(7'), the
energy functional becomes

En(r)] = Fn(r)] + /dr/ V(rn(r'). (1.6)

This is just a formal definition, as all the formerly mentioned complication of the Hamiltonian
1.5 now lies in the functional F[n(r)]. With a known or well approximated universal functional
F[n(r)], the Hohenberg-Kohn theorems provide a great simplification for finding the ground
state properties of a solid state system, as the problem is now only a variational problem with
three spatial coordinates instead of 3N coordinates when trying to solve the full Hamiltonian.
This is due to the change to density as the basic variable instead of many-body wave-functions.

1.1.2 Kohn-Sham equations

Kohn and Sham proposed an approach for handling interacting many-body systems by intro-
ducing an auxiliary non-interacting system of electrons [3]

N, 2

b
Hy = Z o + vks(Ti) - (I.7)

I.1 Density Functional Theory

Vir) g no(r) <K:S> no(r) g vks(T)
U f f U
v(r) = Yo(r) Yo,i(7) — i(r)

Figure I.1: Representation of the KS ansatz. This scheme shows the connection between many-
body properties (left) and the auxiliary KS system (right). HK here denotes the Hohenberg-Kohn
theorems applied to the respective system and the subscript O the respective ground state. The
schema is taken from [12, p. 137] and adapted for the notation in this thesis.

With a correction potential vkg such that the ground state charge density for the auxiliary and
the interacting system are the same. This introduces a new set of orthonormal single-particle
wave functions, the solutions to the non-interacting problem ;. The density for this system is

calculated as
Ne/2

n(r) = 3 [i(r). (L8)

The restriction of equality of the ground state densities for the interacting and the non-
interacting system makes it possible to calculate all properties of the interacting system just
by solving the non-interacting system (using the Hohenberg-Kohn theorems). This connection
is visualized in a flowchart in fig. 1.1. The important point is that in principle, all many-body
properties are available through the Kohn-Sham (KS) scheme.

The kinetic energy of such a non-interacting problem can be easily calculated as sum over all

electrons
Ne/?

Bafnlr)] = =5 > [druir)avi(r). (1.10)

With the help of this system and the classical electrostatic energy

Ey[n(r)] = %//dﬁ dry TLIN(T2) (1.11)

71 —7a|

an ansatz for the total energy functional in eq. 1.6 can be written as
En(r)] = Ts[n(r)] + Eu[n(r)] + Exc[n(r)] + /dr' V(r')n(r'). (L.12)

where now Exc[n(r)] is a functional of the density accounting for all exchange and correlation
effects not present in the non-interacting electron system. The success of DFT lies in the fact
that Fxc contributes only a small part of the total energy and can be approximated in a useful
manner. Even very simple approximations to Exc such as the Local Density Approximation
(LDA), which uses the exchange and correlation energy of a homogenous electron gas can give
accurate results for very inhomogeneous systems [13]. Better results for systems with rapidly
changing densities can be achieved with General-Gradient-Approximations (GGA) to Exc,
which also consider the gradient of the density. Perdew, Burke and Ernzerhof developed the
first exchange-correlation-functional of this type, the PBE XC-functional [14].

I AD initio methods for materials modeling

Using that form of E[n(r)], from the variational problem (with a Lagrange parameter introduced
to ensure the orthonormality of the states ;)

5 | Eln(r)] - ZAJ- [/ A3 |12 — 1} =0 (1.13)

a set of single particle, Schrédinger-like equations can be derived:

! L 3! n(r’) 0Exc () = N (1
(S 2/d ir—] T sn(r) +V) Yi(r) = Nihi(r) (1.14)

Schrédinger-like in this context means, that with the identification of the Hartree potential

Vi =1 [d% |Z(_T;2‘ and the exchange-correlation potential Vxc = gf(’;c) the potential vkg in
eq. [.7 is
1 ! OF
UKS:VH‘FVXC‘FV:f/dST/ n(r) + XC—|—V. (115)
2 |r — /| dn(r)

Eq. 1.14 can be rewritten as the KS equations
1
<—2A + UKS) Yi(r) = eii(r). (1.16)

Importantly, the potential vks depends on the solutions 9;(r), as Vg and Vx¢ include the
density n(r). The problem thus is a self-consistent problem, meaning the density used for
calculating the potentials and the obtained solution only agree for the exact solution. Arriving
at a solution consists then of iterating the process of obtaining a new set of potentials from
the solution and solving the KS equations again.

This kind of iterative, self-consistent method lends itself to being implemented in a compu-
tational context, as every single step is mathematically simple and the complexity arises for
instance from size of the matrices occurring or the number of steps needed, which makes
calculation by hand tedious but is perfectly suited for execution on a computer.

1.1.3 Pseudopotentials and basis set

In order to represent the states and operators in eq. 1.14, a basis set has to be chosen. Bloch’s
theorem states that in case of a periodic external potential, which makes the Hamiltonian
commute with translation operators for translation by a lattice vector, the common eigenstates
of these operators are:

() = Yu(r) = e Tunp(r), (L17)

where k is the quasi-momentum, n is the band index and wu,g(r) has the periodicity of the
unit cell. A natural choice to represent u,x(r) is the discrete set of plane waves

_ i eiG"r
unk(r) = \/V ; ’ (118)

1.2 Density Functional Perturbation Theory

where G is a reciprocal lattice vector and V is the volume of the unit cell. From that the form
Unk follows:

1 ,
— Yp(r) = —=) kTG, (1.19)
>
With this choice of basis set, the kinetic energy is easily calculated:

(s ()]~ V7 () = 3 S e+ GI2. (120
G

Another important consequence of this choice of basis set is that the electron density (eq. 1.8)
now becomes an integral over the Brillouin zone, which for numerical computation has to be
approximated by a sum over a finite set of k points.

One problem of this choice of basis set lies in the fact that the lower energy core electrons
are localized in the unit cell and as such need a significant amount of plane waves to be
meaningfully described.

Importantly, the core electrons don’t contribute directly to chemical bonds and physical
properties of a solid, only by interaction with valence electrons. An approach to make the
calculations more economical is then not to treat the core electrons explicitly, but instead
to introduce an effective potential which includes the effects of both the core and the core
electrons. These potentials are called Pseudopotentials (PP). They can be constructed from
precise atomic calculations and significantly reduce the number of plane waves required while
keeping the calculations accurate. One procedure to construct PPs which are transferable over
a range of different environments was given by Haman et. al. [15]. The idea is to construct
the potentials in such a way, that the energies from the real and pseudo wave functions
(wave functions calculated with the PPs) agree, the real and pseudo wave functions agree
beyond a certain radius r¢ from the nucleus and the charge densities calculated from real and
pseudo wave functions agree inside the radius r¢. PPs constructed in such a way are called
norm-conserving PPs.

A cutoff energy FEcuto can be used to further reduce computation time by allowing only
expansion coefficient with

k+ G|?
% S Ecutoﬁ . (121)
With Fast Fourier Transforms FFT, an efficient algorithm exists to transform from (discrete) real
to (discrete) reciprocal space. Every expectation value can be calculated in the representation
where the respective operators are diagonal: in reciprocal space for the kinetic energy and in
real space for the potentials. Details about the implementation of this will be discussed in sec.
11.2.2.

1.2 Density Functional Perturbation Theory

Within the framework of DFT a treatment of lattice vibrations can also be derived, as only
knowledge of the ground-state density and its linear response to change in nucleic geometry
is needed. Since this is the fundamental quantity in DFT, an extension in DFPT can be

I AD initio methods for materials modeling

developed for calculating properties of lattice vibrations. This theory will be outlined in this
section, following the review article by Baroni et al. [16].

1.2.1 Sternheimer equation and Hellman-Feynman theorem

In a first step, two prerequisite equations are derived, namely the Sternheimer equation
describing corrections to a wave function and the Hellman-Feynman theorem linking the
derivative of the total energy of a system to the derivative of the Hamiltonian with regards to
the same parameter.

The Sternheimer equation follows from perturbation theory. The idea is to treat a quantum
system as an easily solvable system H, experiencing a small perturbation H,. The Hamiltonian
for the perturbed system is then

H = Hy+ \H, (1.22)

with eigenstates und eigenvalues
Hn) =€, |n) . (1.23)

These eigenstates and eigenvalues can now be expanded in terms of the parameter A,

In) = [n%) + A ') + X2 [n®) + ..., (1.24)
en =€ 4 Al 4 X262 (1.25)

Inserting these expansion into eq. 1.23 and sorting by order of A" gives then

0" order: H ‘n0> =0 ’n0> (1.26)
1% order: H, |n1> + H; |n0> =) ’n0> + €0 ’n1> (1.27)
2" order: Hy |n®) + Hy |n') = 0 In®) + € b In') + 2 In?) (1.28)

n n

Closing the scalar product in eq. 1.27 with <n0| from the left leads to the first order energy
correction via

(n°| Ho |n') + (n°| Hy |n%) = e (n°|n®) + 0 (n°|n") (1.29)
= M) = <n0‘ H,y |n0> . (1.30)

The first order correction to the eigenstates, also known as the Sternheimer equation can be
calculated by rearranging eq. 1.27

(Hy — €l9) In') = —(Hy -) In?) . (1.31)
The Hellman-Feynman theorem [17] links the derivative of the eigenvalue of a Hamiltonian Hy

depending on a continuos parameter A with the derivative of the Hamiltonian with respect to
that same parameter. Starting from the Schrodinger equation

Hy|92) = Ex [9y) (1.32)

1.2 Density Functional Perturbation Theory

the derivative of E) with respect to A can be calculated using the product rule

o,

8 ~
NN <1/J/\\HA|1/),\> (1.33)

0Py (75
<6)\ ¢A> <¢,\ 8/\> <1/),\

H), can now act on the states [15) to the right or to the left in the first two terms

OH\

H, H,

U > . (1.34)

= E) < 9 1/J,\> + B\ <¢,\ ¢/\> <¢,\ 0H, U > (I.35)
Br o {ahin) + <w OHy du> (1.36)
- EA%IJr <¢A O, W > . (1.37)

With that the Hellman-Feynman theorem follows:

OBy _

8H>\

¥ > (1.38)

1.2.2 Lattice vibrations from electronic structure

As discussed in the beginning of this chapter, nucleic and electronic degrees of freedom can be
decoupled in the Born-Oppenheimer approximation. The connection between lattice dynamics
and the electronic structure in the Born-Oppenheimer approximation was first pointed out
by De Cicco and Johnson [18] and Pick, Cohen, and Martin [19]. The lattice dynamics are
determined by the Schrodinger equation involving the previously neglected kinetic energy of
the nuclei and E(R), the ground-state energy of the electronic Hamiltonian 1.4, which depends
parametrically on the set of all nucleic coordinates R:

(Z WVQ + E(R)) ®(R) = 6B(R) (1.39)

This equation gives eigenstates @(R) and energies & for the nuclei. The system is then in
equilibrium, when the forces acting on the nuclei vanish

OE(R)

F,=—
OR,

=0. (1.40)

The vibrational frequencies w are determined by the Hessian of F(R), usually called the matrix
of interatomic force constants:

1 PER)

/Mo M, OR,0R;

det =0 (1.41)

I AD initio methods for materials modeling

Thus, the calculation of the vibrational properties as well as the equilibrium geometry depend
on the first and second derivatives of the energies FE(R). These derivatives can be calculated
using the Hellman-Feynman theorem 1.38, where the parameter A is the nucleic coordinate R,,.
Keeping in mind that in the Born-Oppenheimer Hamiltonian 1.4 only the Coulomb interaction
between the electrons and the nuclei and the Coulomb interaction between the nuclei have a
dependence on the nucleic coordinates R, the force acting on nucleus « is then

F, = —851(%1:) =— <WR(T) MI;T?ER) WR(T)> (1.42)
- <WR<7~> e+ S wR(r)> (143
o /dr nrl®) ag;ir) B 8;5;:1 7 (1.44)

where Wg(r) is the ground state wave function of Hpo(R) and ng(r) is the ground state
electronic density corresponding to a nucleic configuration R.

The second derivative of E(R) is then calculated using the product rule
0’E(R) OF, ong(r) OVg(r) 0?Vr(r) Wy
= =/d d . (L.45
/ " "9R; OR. +/ rnr(r) R SR, T oRwoR, Y

The lattice dynamics are thus determined by the electronic density n(r) and its linear response
on R('I’)

OR,0R; OR,

to a change in the nuclear geometry

1.2.3 Density Functional Perturbation Theory

The density response g’f{(r) can be calculated within a KS DFT formulation. This approach

combining perturbation theory7 linear response theory and DFT is called Density Functional
Perturbation Theory (DFPT), developed by Baroni et al. [20] and Gonze [21].

In a first step, the electronic density 1.8 will be linearized

N./2

An(r) = 4Re Z¢) Ay (7 (1.46)

with the finite-difference operator regarding the parameter R (the superscript has been omitted
in eq. 1.46)

ARE = Z OFr (1.47)

The variation of the KS orbitals can be obtamed with the Sternheimer equation 1.31
(H() — Gi) |A’lﬁl> = —(AUKS — Ael) |¢z> 5 (148)

where Hj is the unperturbed KS Hamiltonian 1.7, Avkg is the first-order correction to the

potential vkg
1 An(r’) Ovxc
Avgs = 5 [d*
VKs 2/ " |r—r’|+ on

+ AV (1.49)

n=n(r)

1.2 Density Functional Perturbation Theory

and Ae; = (;|Avksltp;) is the first-order correction to the KS eigenvalue ;.

As the right hand site in eq. 1.48 depends again on the perturbed density An(r) (and as such
on |Ay;)), eq. 1.46, 1.48 and 1.49 are again self-consistent equations. Wherefore, they can be
solved in an iterative manner.

II Computational Details

II.1 Parallel computing and scalability

The following section will give an overview of the technical aspects of running computer code,
such as QUANTUM ESPRESSO, on massively parallel computing environments. The information
presented in this section follows closely the textbook on high-performance computing by Hager
and Wellein [22].

In scientific computing, one can identify two distinct reasons for distributing workload to
multiple processors:

e The execution time on a single core is not sufficient. The definition of sufficient is
dependent on the specific task and can range from “over lunch” to “multiple weeks”.

e The memory requirements exceed the capabilities of a single core.
Parallelization of a task across multiple processors can be distinguished into two ways:

Single Program Multiple Data (SPMD) Every processor runs the same program, with data
distributed among processors.

Multiple Program Multiple Data (MPMD) Every processor runs a different function, for
example in a pipelining process where multiple consequent operations on the input
data need to be done and data comes in chunks, so every step of the pipeline can run
independent of the others.

The typical case in physics is SPMD. For instance, many calculations require diagonalization of
matrices, which can be iteratively done with algorithms requiring only knowledge of the data
of the nearest neighbors for every matrix element in every step. This enables parallelization
as the whole matrix can be distributed and communication is only required at the bordering
regions for exchange of data in every iteration step. In the case where the iteration step in one
region is faster than in another, waiting times are introduced, as the next iteration step can
only be done after data exchange with the neighboring regions.

In order to judge how well a task can be parallelized, a scalability metric is employed, for
example:

e How fast can a problem be solved with N processors instead of one?

o What kind of bigger problem (finer resolution, more particles, etc.) can be solved with
N processors?

e How efficiently are the resources utilized?

In this thesis, the main concern is speeding up the execution of extensively expensive calculations
with a fixed problem size, so the first metric will be used to judge the quality of parallelization.

11

IT Computational Details

This metric is called speedup and is defined as

S ==
TN’

(I1.1)
where Tj is the execution time on a single processor and Ty is the execution time on N
processors. In the ideal case, where all the work can be perfectly distributed among the
processors and all processors need the same time for their respective workload, the execution
time on N processors would be Ti/N, so inserting this into eq. II.1 gives a speedup of

§S=-L=N. (IL.2)

In reality, there are many factors either limiting or in some cases supporting parallel code
scalability. Limiting factors include:

Algorithmic limitations When parts of a calculation are mutually dependent on each other,
the calculation cannot be fully parallelized.

Bottlenecks In any computer system exist resources which are shared between processor cores
with limitations on parallel access. This serializes the execution by requiring cores to
wait for others to complete the task which uses the shared resources in question.

Startup Overhead Introducing parallelization into a program necessarily introduces an over-
head, e.g. for distributing data across all the processors.

Communication Often solving a problem requires communication between different cores (e.g.
exchange of interim results after a step of the calculation). Communication can be
implemented very effectively, but can still introduce a big prize in computation time.

On the other hand, better caching can lead to better scaling than S = N: as optimal
performance per core is achieved when all the data can be kept in cache, reducing the data
size per processor by distributing data among more processors can lead to each individual
processor being faster than in the single core case.

A simple ansatz for modeling speedup with these limitations in mind was first derived by Gene
Amdahl [23]. Assuming the work that needs to be done is split into a part which cannot be
parallelized s and a part which can be parallelized ideally p, serial time can be normalized to 1:

Th=s+p=1 (I1.3)
The time for solving the problem on N processors is then

Ty =5+ % . (IL4)

The speedup is now
Ts 1 1
S=_—+= > = — - (I1.5)
T, s+x% s+-%

This equation is called Amdahl’s law. It shows that even for N — oo, the speedup has an
upper bound of % Furthermore, the value of s determines the range of processors where the
speedup is close to the ideal case, as shown in fig. II.1. It shows that for a bigger value of s,
not only leads to the speedup saturating at a smaller constant, but also differing significantly

12

I1.2 QuanTuM ESPRESSO

speedup S

2 4 6 8 10 12 14 16 18 20
number of processors N

Figure I1.1: Speedup modeled by Amdahl’s law for different portions of strictly serial workload

from the ideal case even for a small number of processors. For s = 0.01, a speedup of around
16 for 20 processors used can be deemed acceptable in terms of how efficient the computing
resources are used, whereas even using more than 6 processors in the case of s = 0.2 is not.

The weakness of Amdahl’s law lies in the simplicity of it, as the different factors limiting
parallelization are generally not independent of N. Communication overhead would need to
be accounted for with some kind of function ¢(N) with the form depending on many factors
like speed and bandwidth of the communication hardware or the way the data is distributed.

With just Amdahl’s law, decomposition into the several factors limiting parallelization is not
possible, so an assessment of how calculations can be improved in detail is also not possible.
Regardless, Amdahl’s law explains in simple ways how speedup can differ from the ideal case
and can also be reasonable accurate when the costs for communication don’t depend strongly
on N.

I1.2 Quantum ESPRESSO

QuanTuM ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation,
and Optimization) [5, 6] is a collection of packages implementing (among others) the techniques
described in sec. 1.1 and 1.2 to calculate electronic structure properties (module PWscf) as well
as phonon frequencies and eigenmodes (module PHonon).

11.2.1 Compilation of Quantum ESPRESSO

As motivated above, the main goal of this thesis is an in-depth analysis of the QE software with
respect to performance in terms of used computation resources. The choice and availability of
different compilers will significantly influence this. Therefore, a short overview is presented

13

IT Computational Details

here. The information in this section is taken from the QUANTUM ESPRESSO 7.0 user guide
[24].

The QuanTUuM ESPRESSO distribution is packaged with everything needed for simple, non-
parallel execution, the only additional software needed are a minimal Unix environment (a shell
like bash or sh as well as the utilities make, awk and sed) and a Fortran compiler compliant
with the F2008 standard. For parallel execution, also MPI libraries and an MPI aware compiler
need to be provided.

QuaNTuM ESPRESSO needs three external mathematical libraries, BLAS and LAPACK
for linear-algebra as well as an implementation of FFT for Fourier transforms. In order
to make the installation as easy as possible, QUANTUM ESPRESSO comes with a publicly
available reference implementation of the BLAS routines, the publicly available LAPACK
package and an older version of FFTW (Fastest Fourier Transform in the West, an open source
implementation of FFT). Even though these libraries are already optimized in terms of the
algorithms implemented, usage of libraries implementing the same routines which can use more
specific CPU optimizations might improve performance, e.g. libraries included in Intel oneAPI,
which are optimized for use on Intel CPUs.

On the PHYSnet cluster, a variety of software packages are available as modules. The
benchmarks in this thesis were made using the following module combinations:

o openmpi/4.1.1.gccl0.2-infiniband: OpenMPI 4.1.0 (implies usage of QUANTUM
ESPRESSO provided BLAS/LAPACK)

e scalapack/2.2.0: OpenMPI 4.1.0, OpenBLAS 0.3.20 and ScaLAPACK 2.2.0
e intel/oneAPI-2021.4: Intel oneAPI 2021.4

QuanTUM ESPRESSO offers a configuration script to automatically find all required libraries.
As the default options of the configure script work well in the use case of this thesis, all
compilations were made using the minimal commands

module load <module names>
./configure --with-scalapack=no|yes|intel

with the scalapack options yes (when using scalapack/2.2.0), intel (when using
intel/oneAPI-2021.4) and no otherwise.

The output of the configuration script gives information about the detected libraries. In
the following output, the Intel Intel oneAPI package was loaded, so BLAS and ScaLAPACK
libraries from that package will be used, whereas the included FF'T library will be used:

The following libraries have been found:

BLAS_LIBS= -1mkl_intel_1p64 -1lmkl_sequential -1lmkl_core
LAPACK_LIBS=

SCALAPACK_LIBS=-1mkl_scalapack_lp64 -1mkl_blacs_intelmpi_lp64
FFT_LIBS=

14

I1.2 QuanTuM ESPRESSO

11.2.2 Parallelization capabilities implemented in Quantum
ESPRESSO

QuanTuM ESPRESSO is intended to be used in parallel environments and as such offers
possibilities to manage how the work is parallelized. This section introduces the parallelization
capabilities of the PWscf and PHonon modules and explores how they potentially affect the
scaling behavior of QUANTUM ESPRESSO. The information in this section stems from the
user guides for the two modules [25, 26].

Initial n(r)

|

Calculate vg[n(r)] and vxc[n(r)]

I

Fourier transform potentials

|

Solve KS equations in reciprocal space

|

Fourier transform wave functions

I

Calculate n(r) and E[n(r)]

|

Done if change in E is small enough

Figure I1.2: Flowchart of an iterative algorithm to solve the KS equations with the use of Fourier
transform. As the density n(r) determines again the potentials going into the KS equations, steps
2-5 are run until self-consistency is reached.

Fig. 11.2 shows a possible approach to solving the KS equations. The algorithm is taken from
the textbook by Martin [12], with the Fourier transform steps added to establish in which
representation every calculation step is run.

A few possibilities for parallelization of calculations can be derived from that. First of all, the
real and reciprocal space are discretized to allow for numerical treatment, these grids can be
distributed among processors, meaning the wave functions in the plane-wave basis set as well as
charges and densities. This distribution of data mainly works around memory constraints, as
using more processors lowers the memory requirement for every single processor. Going further,
QuanTuM ESPRESSO automatically parallelizes all linear-algebra operations on this real
space/reciprocal grid. The price to pay for this parallelization is the need for communication
between processors: as an example, Fourier transforms always need to collect and distribute

15

IT Computational Details

contributions from and to the whole reciprocal/real grid in order to transform between them.
This kind of parallelization is called PW (plane-wave) or REG (real & reciprocal) parallelization.

As discussed in sec. 1.1.3, the density in the plane-wave basis set is a sum over different &k points,
where the calculation for these are independent of each other until calculating the density n(r).
In QuanTUuM ESPRESSO this is implemented such that a separation of the total number
of processors into smaller pools, each doing the calculations for a set of k points is possible.
This is called k-point parallelization. The CLI parameter -nk <number of pools> determines
how many pools the total number of processor N is split into. Hence, the resulting number
of processors in one pool is ¥/n,. Within one k-point processor pool, the PW parallelization
with its heavy communication is automatically applied.

On a level of parallelization independent of that, QUANTUM ESPRESSO can use ScaLAPACK
to parallelize (among other things) the iterative orthonormalization of KS states. This
parallelization level is called linear-algebra parallelization and is controlled by the CLI parameter
-nd <number of processors in linear-algebra group>. Importantly, this parameter sets
the size for the linear-algebra group in every k-point processor pool, so the number of processors
in the linear-algebra group has to be smaller than the number of processors in one pool.
Furthermore, the arrays on which the calculations are performed on are distributed in a 2D
grid among processors. This means that the number of processors in the linear-algebra group
has to be a square number.

In the case of the PHonon module, the representation of states in a plane-wave basis set stays the
same, so all three parallelization schemes mentioned for the PWscf module can also be employed.
Furthermore, calculations for two phonon wave vectors g, q’ are not coupled, as different wave
vectors lead to different perturbations and as such independent self-consistent equations. Thus
they can be split up into independent calculations, which are called images in QUANTUM
ESPRESSO. The concept of image parallelization in QUANTUM ESPRESSO is actually more
general than just to be used for phonon calculations, as other kinds of independent iterative
calculations can also be run with image parallelization. The parameter controlling image
parallelization is ni <number of images>. Following this, the number of processors in one
k-point pool is then given by N/N; /Ny, if image and k-point parallelization is applied, where
N; denotes the number of images.

11.2.3 Evaluating the scalability of Quantum ESPRESSO calculations

In the QuaNnTUM ESPRESSO output, a time report is printed at the end. This time report
includes CPU time and wall time. Three different metrics of scalability can be calculated from
this:

o runtime: absolute runtime (wall time) of the compute job
e speedup: runtime on N processors divided by runtime on a single core

e wait time: percentage of wall time not used by QUANTUM ESPRESSO process, so writing
to disk, waiting for IO devices or other processes, etc. (calculated as (wall time - CPU
time) / wall time)

For analysis mainly speedup will be used to evaluate the scalability of QuANTUM ESPRESSO
calculation. It makes comparing the scaling of calculations with different absolute runtimes

16

I1.3 Hardware configuration of the PHYSnet cluster

easy: as discussed in sec. 1.1, optimal scaling is achieved when the speedup has a slope of one,
independent of the runtime.

Regardless, the other two parameters should also always be considered. In the end, absolute
runtime is the most important factor and should govern the decision of how much computational
resources should be used for solving a particular problem. For instance, a problem with a
single core runtime of 600s, a speedup of 100 would mean a runtime of 6s, whereas a speedup
of 200 would mean a runtime of 3s. Even with optimal scaling, the 100 processors needed for
the speedup of 200 could be considered wasted for just 3s of saved time. On the other hand,
for a problem with a single core runtime of 2400 h, the difference between a speedup of 100
(runtime 24 h) and 200 (runtime 12h) is the difference between waiting a whole day for the
calculation and being able to let the job run overnight and continue in the morning, so using
100 more processors for that can be considered a good use of resources.

As for the wait time, this metric can be used to separate the different factors of poor paral-
lelization discussed in II.1. Startup overhead is easy to identify, as this should be a small,
near constant percentage of the absolute runtime. This of course can vary depending on how
complex data distribution is, but there should at least not be a strong dependence on the
number of processors, as only a small amount of communication is needed. Communication
and bottlenecks on the other hand both introduce wait time which depends on the number of
processors. Differentiating between them relies on knowledge of the specific hardware of the
system running the calculations. This means how many cores are on a single chip, motherboard
or node, which resources are shared between how many cores etc. .

For this interpretation to be meaningful, the CPU and wall times reported by QUANTUM
ESPRESSO have to be accurate. As an example for how errors could be overseen, when
executing programs on multiple processors in parallel, CPU time is measured per processors.
This means some kind of information truncation is done when a single number (such as in
QuanTUuM ESPRESSO) is reported. Whether this is taking the average over all processors,
just reporting the time for a single processor or any other kind of truncation is unclear.

However, the notion of using the difference between wall time and CPU time for evaluat-
ing the quality of parallelization is supported by the user guide for one of the QUANTUM
ESPRESSO modules [25, sec. 4.5], therefore it will also be used as a qualitative measure of
good parallelization in this thesis.

I1.3 Hardware configuration of the PHY Snet cluster

All calculations were run on a reserved subset of the infinix queue on the PHYSnet compute
cluster with 20 nodes. As of time of writing, the nodes in this queue are equipped with two
Intel Xeon E5-2680 CPUs, as such providing 20 cores per node, 10 per chip and 200 processors
in the whole queue. The nodes are connected with an Infiniband FDR 4x network.

17

II1 Examined systems

IT1.1 Silicon

Silicon is the fundamental material in modern transistors and as such one of the pillars of the
digital revolution. Analogue to the Stone, Bronze or Iron Age, the current age of civilization
can thus be called the Silicon Age [27]. Consequently, silicon is a well studied material from an
experimental and theoretical standpoint. Combining this with the fact that DFT calculations
on silicon are not particularly expensive makes it an ideal system for an introduction to DF'T
calculations as well as a good benchmarking system. Consequently, all benchmarks in this
thesis were run on silicon first and with the information gained from that, benchmarks on a
more expensive system were run.

The calculations in chapter IV and V were made with a plane-wave cutoff of 70 Ry and on a
40 x 40 x 40/6 x 6 x 6 k-point grid respectively. All calculations use a PBE XC-functional
with a norm-conserving PP generated using Vanderbilt’s method [28].

II1.2 TaS,

Tantalum Disulfide (TaSs) belongs to the class of Transition Metal Dichalcogenide (TMDC)s.
The most common stoichiometry of compounds in this class is MXs, where M is a transition-
metal and X is a chalcogen atom. TMDCs occur with different atomic coordinations. Fig.
ITI.1 shows the structure of trigonal-prismatic TaSy (2H-TaSs), which consists of a hexagonal
transition-metal lattice between two hexagonal chalcogen lattices whose atoms are aligned on
top of each other. Seen from above, they form a honeycomb lattice.

TMDCs were known and studied as a bulk material since more than five decades [30]. The more
recent possibility to do experiments on freestanding monolayers [8] has brought these materials
back into focus, as for instance bulk TaS, shows superconductivity [31] and formation of charge
density waves [32], so the effect of the reduction of dimensionality on these phenomena can be
studied on it [1, 33].

111.2.1 Charge-density waves

A charge density wave is a periodic modulation of the electronic charge density of a solid.
This changes the potential acting on the nuclei, so a distortion of the lattice accompanies the
formation of a charge density wave, to the point where both terms are used interchangeably.
Fig. II1.2 shows a charge density wave in 2H-TaS,.

A simple model for the formation of charge-density waves in a one-dimensional case was given
by Peierls in 1955. Following the review by Griiner [34], the argument is as follows: the

19

III Examined systems

Figure II1.1: Crystal structure of a 2H-TaS»> monolayer as seen from the side (left) and from
the top (right). Visualized using XCrySDen [29]

formation of a periodic distortion of the lattice creates a unit cell twice as large as the original
one, so the Brillouin zone becomes half as large. Thus, the bands fold back onto this smaller
Brillouin zone and split due to an avoided crossing. This results in a gap at the Fermi level.

8 e o 8 e o
? ° 9 ? °
8
o Q Q Q o o
@ @ o \@ ®
Q o Qo Q o Q
° o\ o o\ o
8 ® o
Q Qo Q Qo Qo Q

Figure II1.2: TaS, charge density wave. Gray dots are atoms in the symmetric phase, yel-
low/black dots are the Tantalum/Sulfur atoms in the charge-density-wave phase.

111.2.2 Computational parameters

All calculations on the 2H-TaSy charge density wave were made with a plane-wave cutoff
of 100 Ry and on a 12 x 12 k-point grid. The calculations use a PBE XC-functional with a

20

II1.2 TaS,

norm-conserving PP generated by Hartwigsen et al. [35]. Input files for both the symmetric
and charge-density-wave phase were kindly provided by Dr. Jan Berges.

21

IV Parallelization of
electronic-structure calculations

The PWsct (Plane-Wave Self-Consistent Field) package is one of the core modules of QUANTUM
ESPRESSO, as many other modules require ground state density and total energy as input.
This chapter deals with examining the best ways to run PWscf calculations in the scf mode.
All benchmarks except when otherwise noted are averaged over 10 runs.

IV.1 First scaling tests

The first step in analyzing the scaling of the PWscf module is to perform a baseline scaling
test without any optimizations applied. In Fig. IV.1 to IV.4 two scaling tests on the earlier
mentioned benchmarking systems Si and TaS, are depicted. The tests are run using QUANTUM
ESPRESSO 7.0, compiled using the Fortran and C compilers in OpenMPI 4.1.0, without any
of the compilation or runtime optimization parameters mentioned in section I1.2 used.

As discussed in sec. 11.2.3, three different metrics of scalability can be deduced from the time
data given by QUANTUM ESPRESSO:

o runtime: absolute runtime (walltime) of the compute job

e speedup: runtime divided by runtime of the job on a single core

e wait time: percentage of wall time used by system tasks, e.g. writing to disk, etc.
These are depicted in fig. IV.1 and IV.2 for the silicon benchmarking system.

On a single node, the speedup does scale linearly with the number of processors until around 10
processors, but with a slope of 1/2 instead of 1 (which would mean ideal scaling). Beyond this
number, the slope decreases even more such that a maximal speedup of around 7 is achieved
for 20 processors used. One compute node is equipped with 20 cores. Hence trying to scale the
communication intensive calculations beyond that threshold makes the calculations run even
slower than on a single core. Interestingly, the wait time plot in fig. TV.2 shows that 10 % to
40 % of runtime is taken by wait time already for less than 20 processors. As discussed in sec.
I1.1, this is a sign of poor parallelization, which can explain the poor scaling seen in fig. IV.1.

Fig. IV.3 and IV.4 show the same scaling test run for the TaSs benchmarking system. Here,
the speedup is not taken as overall runtime divided by runtime on a single core, as the memory
required is more than what can be accessed by a single core. Instead, an estimate of the single
core runtime is made by multiplying the runtime of the job on 4 cores by 4. This assumes
perfect scaling for 1-4 processors, but the relative scaling is accurate, no matter the accuracy
of this assumption.

23

IV Parallelization of electronic-structure calculations

40 A

35 4

speedup S

-0-0-g \
b o oorosrewe
T T T T

40

20 25
number of processors N

30 35

Figure IV.1: Scalability for the Si benchmarking system. The speedup shows linear scaling
with a slope of 1/2 up to 10 processors, with worse than single core performance on more than on
node. QUANTUM ESPRESSO 7.0 compiled with OpenMPI 4.1.0, nk 1 and nd 1

The scaling test on the TaS; system shows much better scaling. For up to 20 processors, the
speedup follows the ideal scaling with a stark decline with more processors. This is also reflected

1000 1
e 50 - b
Lol h
800 - $ e A ..',.0*000
w o & | 407 ry U
= 600 A ; o o v
2 o E 4
= Q 1 5 30 A 7
= | 1 = Po
S 4001 F 5
fud \ () = ll
® / 201 ¢
200 T ° 1 Vi
L You Sy ®
9 eee 101¢
0 10 20 30 40 0 10 20 30 40

Number of processors N

Number of processors N

Figure IV.2: Absolute runtime and wait time for the scalability test on the Si benchmarking
system. The runtime shows the scale of how execution on a single node versus two nodes slows
down the calculation, the wait time shows that when adding more processors, a higher percentage
of runtime is spent in tasks not relevant to the calculation. QUANTUM ESPRESSO compiled with
OpenMPI 4.1.0, nk 1 and nd 1.

24

IV.1 First scaling tests

speedup S

20

25
number of processors N

Figure IV.3: Scalability for the TaS> benchmarking system. The speedup is linear with a slope
of one on a single node, with a drop in speedup over two nodes. QUANTUM ESPRESSO 7.0

compiled with OpenMPI 4.1.0, nk 1 and nd 1

in the wait time in fig. 1V.4, as it goes from a small constant value for under 20 processors

runtime T [s]

35000 A

30000 ~

25000 A

20000 +

15000 ~

10000 A

10 20 30
Number of processors N

wait time [%]

= = N N w
[6,] o ul o ul o
1 1 1 1 1 1

o

| o-o--0-0-9

-~

10 20 30 40
Number of processors N

Figure IV.4: Absolute runtime and wait time for the scalability test on the TaS2 benchmarking
system. The difference between execution on a single node and two nodes is seen in the longer
runtime and higher percentage of wait time. QUANTUM ESPRESSO 7.0 compiled with OpenMPI

4.1.0,nk 1 and nd 1

25

IV Parallelization of electronic-structure calculations

to some kind of dependence on the number of processors, which hints to communication or
bottlenecks being a limiting factor here.

The comparison between the silicon and TaSs benchmarks points towards better parallelizeabil-
ity for system with more electrons and by extension bigger matrices and longer iteration times.
As such they profit more from using more processors than systems with just a few electrons.

These scaling tests now pose the question, how better scaling over more than one node can be
achieved.

IV.2 Testing different compilers and mathematical
libraries

A first strategy for solving issues with parallelization is trying different compilers and mathe-
matical libraries. As discussed in sec. 11.2.1, QUANTUM ESPRESSO can make use of a variety
of software packages available on the PHYSnet cluster. The benchmarks in fig. IV.5 are run
with the following software combinations:

(a) OpenMPI 4.1.0 and QuanTUuM ESPRESSO provided BLAS/LAPACK, so the baseline
test discussed in sec. IV.1

(b) OpenMPT 4.1.0, OpenBLAS 0.3.20 and ScaLAPACK 2.2.0
(c) Intel oneAPI 2021.4

Fig. IV.5 shows that just using another BLAS/LAPACK library (OpenBLAS in this case)
with the same MPI version does not change the scaling behavior, in contrast to using Intels
Intel oneAPT packages. The latter shows optimal scaling behavior for up to 6 processors. It is
however important to also look at the total runtime in this context.

Fig. IV.6 shows the absolute runtime for both the OpenMPI and Intel oneAPI benchmarks.
This explains the difference in scaling seen in the speedup plots: the runtime on a single core
is significantly higher for the Intel oneAPI benchmark, so even though the runtime between
both benchmarks is about the same starting from around 10 processors there is a difference
in speedup. To assess this more quantitatively, tab. IV.1 lists the average runtime for some
selected number of processors. Importantly, the runtime for the Intel oneAPI benchmark is
faster for smaller numbers of processors (except 1), yet only 15 % for 2 cores and even smaller
differences for more cores, with the OpenMPI calculation being even a little faster for 20
processors again.

The same benchmark with the Intel oneAPI compiled version of QuaNTUM ESPRESSO is
shown in fig. IV.7 and 1V.8 for TaSy. For this system, the speedup roughly follows Amdahl’s
law, discussed in sec. II.1 with a linear growth in speedup up to 32 processors with a saturation
and only a small gain in speedup with more processors. In contrast to the benchmark with just
OpenMPI (fig. IV.3) there is no drop in speedup after 20 processors. This is remarkable and
also a difference to the silicon benchmarking system, where 1 node is a definite upper bound for
scalability. An explanation for this behavior can be made with the help of Amdahl’s law again.
As discussed in sec. II.1, the exact form of the speedup is not dependent on absolute times
of parallelized and unparallelized parts of a calculation, but rather the proportion between
these two (and can thus be characterized by just the purely serial part s). This means that

26

I1V.2 Testing different compilers and mathematical libraries

40 A 40
30 1 30 A
%))
o o
=} >
B 20 3 204
(] (]
[eX o
%) %]
10 10
o °
._.0-..'.' \ 0800y *-k
o A== £-090-09009009- Wt ECELLEELEEE 0 9-0-909-0-0 0
0 10 20 30 40 0 10 20 30 40
number of processors N number of processors N
(a) OpenMPI (b) OpenMPI, OpenBLAS, ScaLAPACK
40 A
30 1
n
o
=}
T 204
(]
o
%)
10 .
i AEEEEEEEPEREEE PR pah e

0 10 20 30 40
number of processors N

(¢) Intel oneAPI

Figure IV.5: Scalability for the Si benchmarking system with different combinations of compilers
and mathematical libraries. Intel oneAPI compilers show a different scaling behavior, with better
scalability across multiple nodes. nk 1 and nd 1

for a more expensive system such as the TaS; benchmarking system, when the absolute time
for communication, data distribution and collection stays roughly the same and the time for
a single KS iteration (which can be parallelized) is way longer, the proportion of the purely
serial part s gets smaller and the scaling behavior changes significantly.

Moreover, the absolute runtime shown in fig. IV.8 shows that the calculations not only scale
better than with OpenMPI, but they are significantly faster: whereas the minimum for the
OpenMPI benchmark is around 1h50min for 20 processors, the Intel oneAPI benchmark
averages around 40 min for 24 processors. The wait time across the whole range of processors
is significantly lower than in the OpenMPI benchmarks. This speaks for generally better
parallelization, which confirms the observations made on the speedup measured.

27

28

IV Parallelization of electronic-structure calculations

1000 4 e 600 1 ¢
/
® 500 1 1
800 ” ! |
—_ / Sy
- ¢ ’ = 40011
= 6001 / S]
1
£ ® P £ 3007+
S 40041 / S °
= p 4 " 2004 P
Q 1 \ o\
2004 ! ° \
® 1 - .,‘ \
ha XX P 100 A e ot go0000” ®
0 10 20 30 40 0 10 20 30 40

number of processors N number of processors N

(a) OpenMPI 4.1.0 (b) Intel oneAPI 2021.4

Figure IV.6: Comparison of absolute runtimes between QUANTUM ESPRESSO compiled with
OpenMPI and Intel oneAPI for the Si benchmarking system. The runtimes show again the
different scaling behavior, while minimal absolute runtime is the same for both. nk 1 and nd 1

speedup S

30 40 50
Number of processors N

Figure IV.7: Scalability for the TaS2 benchmarking system. The scaling is close to optimal for

up around 40 processors. QUANTUM ESPRESSO 7.0 compiled with Intel oneAPI 2021.4, nk 1
and nd 1

I1V.2 Testing different compilers and mathematical libraries

° 4.5 -2 »
10000 1 o ad \ /
1 4.0 - ! N e
— \ — 14
@ 8000 1 3 !
Y \ @ 3] i
g 4 c) I
£ 60001 £, N
-E' \ “{:“' Il \\ 1
2 40001 & 2254+
. .
»--e il
2000 ~ 207/
®-o--0-o-0--0 ¢
20 40 60 80 20 40 60 80

Number of processors N Number of processors N

Figure IV.8: Absolute runtime and wait time for the scalability test on the TaS2 benchmarking

system. The wait time is under 5% across the whole range of processors. QUANTUM ESPRESSO
compiled with Intel oneAPI 2021.4, nk 1 and nd 1

While the benchmarks on the silicon system do not seem to favor one set of compilers over the

other, the tests on the TaS, system clearly show the advantages of using Intel oneAPI on the
Intel hardware in the PHYSnet cluster.

The observations on how many processors are optimal for certain kinds of systems not only
stand for themselves as a statement about scaling on a single node or a small number of nodes,
but also provide a basis for scaling beyond the respective optimal ranges of processors for both
systems: The k-point parallelization explained in sec. 11.2.2 can distribute the workload in
such a way that processor pools of sizes within this range work on individual £ points and as
such can provide optimal scaling within one pool while also not losing performance because

the pools do not need to communicate with each other in the same order of magnitude as the
pools have to communicate within themselves.

Keeping the results of this section in mind, an estimate for the quality of k-point parallelization
can already be made: For the silicon system, the size of pools should not be bigger than 6

processors for optimal scaling and for the TaSs system they should not be bigger than 40
Processors.

Table IV.1: Selected absolute runtimes of QUANTUM ESPRESSO compiled with OpenMPI
4.1.0 and Intel oneAPI 2021.4 for the Si benchmarking system, nk 1 and nd 1

Number of

OpenMPI Intel oneAPI
processors
1 466 s 587s
2 286s 2428
4 170s 141s
10 97.9s 91.3s
20 70.2s 82.85

29

IV Parallelization of electronic-structure calculations

801 _e- 16 8071 —e- 16
. _._
60 1 60 -
%))
s s
B 40 T 404
(] (]
[eX o
wn wn
20 1 20 A 8
- -9 -0
- = L SR == =————¢
&~ o -9-0-0--0-0--9 Lo g8 -e-
0+ AN e A G e N 0+# -_.L_g_ ____________________
0 20 40 60 80 0 20 40 60 80
number of processors N number of processors N
(a) OpenMPI 4.1.0 (b) Intel oneAPI 2021.4

Figure IV.9: Scalability utilizing k-point parallelization for the Si benchmarking system with 3
different sizes of processor pools. The size is determined by the parameter nk via size of pools =
number of processors / nk. The maximal speedup is double the speedup reached in benchmarks
without k-point parallelization.

IV.3 Using the parallelization parameters of Quantum
ESPRESSO

As detailed in section 11.2.2, QUANTUM ESPRESSO offers ways to manage how the workload
is distributed among the processors. In pw.x the default plane-wave parallelization, k-point
parallelization and linear-algebra parallelization are implemented. While plane-wave paral-
lelization is automatically applied, k-point and linear-algebra parallelization can be controlled
and will be tested in this section.

IV.3.1 k point parallelization

The benchmark shown in fig. IV.9 is set up as follows: for a given number of processors N, the
parameter NN, splits the IV, processors into IV}, processors pools. As the number of processors
in one pool has to be a whole number, only certain combinations of N, and N}, are possible,
for example N, = 32 could be split into processor pools of size 2 with N = 16, size 8 with
Ny, = 4 or size 16 with N = 2. This leads to choosing the size of the processor pools as a
variable, not the parameter nk.

Fig. IV.9 shows the scaling for poolsizes 2, 8 and 16 for QUANTUM ESPRESSO being compiled
with OpenMPI and Intel oneAPI.

The speedup depicted in fig. IV.9 shows that using k-point parallelization with a pool size
of 2 improves the scaling behavior not only on one node, but especially over more than one
node. While the speedup without k-point parallelization hits a plateau when using more than
6 processors, k-point parallelization enables scaling up until 24 processors. The bigger pool

30

I1V.3 Using the parallelization parameters of QUANTUM ESPRESSO

250 A
M -0- 16 ¢ -e- 16
250 4 |l -0- 8 1 -0- 8
i -e- 2 200 11 -e- 2
W 200 1} . = 1
= | rTN N 1s0{ 1@
- ~ -
1 N
qé 150- “ , ‘§‘~§ g .. \\\
= \ | 4 * £ AN e
N 4
21001 g e 5 100 — S
4 Te L X LN ®.3 S~ P
\'\ *--9-.@ T &L ~eo-—--
R -0-o] o * (AN
50 1 [1= 50 S ..” \\.’ .\\.—'&:.
T0-9--o-0., -0-9 - T Te-
0 20 40 60 80 0 20 40 60 80
number of processors N number of processors N
(a) OpenMPI 4.1.0 (b) Intel oneAPI 2021.4

Figure IV.10: Absolute runtime for the scalability test with k-point parallelization for the
Si benchmarking system with 3 different sizes of processor pools. The runtimes show different
scaling behavior depending on the pool size, relevant is the best scaling pool size 2. Here, minimal
runtimes differ only by a small amount between OpenMPI and Intel oneAPI. nd 1

sizes do not scale as well, which is in agreement with the results of the benchmarks without
k-point parallelization presented in the previous section.

The runtimes depicted in fig. V.10 show that the choice between using OpenMPI and Intel
oneAPI has an effect on how the total execution time scales with the number of processors
especially for the bigger pool sizes, but the relevant, best scaling pool size 2 case shows no
difference in execution time between the two benchmarks. This follows the observations made
in the benchmarks without k-point parallelization.

For both benchmarks, the ideal number of processors seems to be around 24, after that the
runtime is subject to significant fluctuations and does not decrease in a predictable way. The
average runtime for 24 processors are 45.2s (OpenMPI) and 34.4s (Intel oneAPT) respectively,
so about a 10 seconds difference and also around half the minimal time (70.2s and 82.8s at 20
processors) in comparison to the benchmark without k-point parallelization.

The same scaling test is applied to the TaSs benchmarking system in fig. IV.11 and IV.12.

Remarkably, the scaling behavior is swapped in comparison to fig. IV.9, as the pool size 2
saturates and the bigger pool sizes show way better scaling behavior. As already alluded to in
sec. IV.2, the calculations on the TaSs system profit more from parallelization and as such

scale better for bigger pool sizes up until 36 processors in one pool, which is around the upper
limit established in the benchmark without k-point parallelization.

The minimal runtime achieved with k-point parallelization is about 5 min for pool size 36, with
the other pool sizes (except 2) being 1-3 min slower. Fig. TV.12 shows a distribution of wait
times between about 4% and 6 % of the full wall time, with a slight overall increase when

going over 160 processors. This suggests very good parallelization across the whole range of
processors.

31

IV Parallelization of electronic-structure calculations

200 A

175 A

= = =

o N ul

o ul o
1 1 1

speedup S

75 A

50 A

25 A

0 25 50 75 100 125 150 175 200
number of processors N

Figure IV.11: Scalability utilizing k-point parallelization for the TaS> benchmarking system over
a range of processor pools. The speedup actually increases over the upper bound of 40 processors
without k-point parallelization, with pool size 36 parallelizing best. QUANTUM ESPRESSO
compiled with Intel oneAPT 2021.4, nd 1

] ~e- 18 b ~e- 18 b
—®-] -@- 1
6000 1 ®- 3 ®- 8 ,\‘
— \ -@- 36 — 10 -@- 36 ,' \\
2 ¢ @ ~o- 48 | & ~o- 48 H
v 4000 44 241 g sie 24 Lo
£ \ -0- 2 = \ -0- 2 By)
= ' = \
f ol N g ol N
= i 2 \ o, /.y N
2000 g ’f.‘t—o—o—o—o—o—o—o | /‘::\ ’r,l;ggv 1‘;;,’6'— fadibt
\ 4 o - ~@ ’-“-On.--g
Rt ot E Y S / $
o vt g L1
0 50 100 150 200 0 50 100 150 200
number of processors N number of processors N

Figure IV.12: Absolute runtime and wait time for the scalability test with k-point parallelization
for the TaS, benchmarking system over a range of processor pools. The wait time is under 10 %
over almost the whole range of processors. QUANTUM ESPRESSO compiled with Intel oneAPI
2021.4,nd 1

32

IV.4 Comparison with calculations on the HLRN cluster

] 600 -
4077 _o- nd_auto -@®- nd_auto
-. - nd_4 500 4 -’ T nd_4
30 A nd_9 - -®- nd 9
0 i) i
5 ng_is ~ 400 ng_ie
n [} n
S 20 - - _
g £ 300
& 5 goe
10 T 2001 g Y-y s
‘ ";‘..f\f\c:’\&:’\n,,. PP | 100 .ﬂ.‘“‘:h »
R St s
0 10 20 30 40 0 10 20 30 40
number of processors N number of processors N

Figure IV.13: Scalability and runtime utilizing linear-algebra parallelization for the Si bench-
marking system over a range of values for the parameter nd. Using linear-algebra group size slows
down the calculations in comparison to nd 1. QUANTUM ESPRESSO compiled with Intel oneAPI
2021.4, nk 1

1V.3.2 Linear-algebra parallelization

Fig. IV.13 shows the scaling behavior for different values of the parameter nd. Here, nd_ auto
means that no value for nd is specified and QUANTUM ESPRESSO automatically chooses the
biggest square number smaller than the number of processors. It is clearly shown that using
linear-algebra parallelization slows the calculation down significantly for the silicon system.

Interestingly, this again is not reproduced for the more expensive TaS; benchmarking system.
Fig. IV.14 shows consistent times across all values for nd.

Those results are already hinted at in the PWscf user guide [25]. Here, in the guide for
choosing parallelization parameters, using linear-algebra parallelization is recommended when
the number of KS states is a few hundred or more. The silicon system has 8 electrons and is as
such described with 4 KS states, the TaSs system has 153 electrons, so QUANTUM ESPRESSO
uses 92 KS states. In case of metallic materials, the band occupation is smeared around the
Fermi energy to avoid level crossings, so more KS states than % * (number of electrons) are
needed to account for that. Evidently, this number of KS states is on the edge of linear-algebra

parallelization actually speeding up calculations.

IV.4 Comparison with calculations on the HLRN cluster

All calculations so far were exclusively run on the PHYSnet cluster and as such are limited
by hardware and configuration present in the cluster. To assess this limitation, the k-point
benchmarks from sec. IV.3.1 were run again on another cluster, the HLRN cluster in par-
ticular. The North German Supercomputing Alliance (Norddeutscher Verbund fiir Hoch-
und Hoéchstleistungsrechnen - HLRN) operates a distributed supercomputer system at the
Georg-August-Universitidt Gottingen and the Zuse Institute Berlin. The current iteration

33

IV Parallelization of electronic-structure calculations

175

150 A

125 -

100 A

75 A

speedup S

50 A

25 A

0 25 50 75 100 125 150 175
number of processors N

Figure IV.14: Scalability utilizing linear-algebra parallelization for the TaS» benchmarking
system over a range of values for the parameter nd. Speedup is the same for every linear-algebra
group size. QUANTUM ESPRESSO compiled with Intel oneAPI 2021.4, nk chosen such that pool
size = 36

HLRN-IV has nodes with 2 Intel Cascade Lake Platinum 9242 CPUs (48 cores each) and an
Omni-Path (Intels proprietary Infiniband competitor) connection between nodes. QUANTUM
ESPRESSO is compiled with Intel Parallel Studio XE Composer Edition 2019 Update 5 (which
is the predecessor of Intel oneAPI, bundled without MPI on the cluster) and Intel MPT 2018.5.

Fig. IV.15 and IV.16 show the benchmarks for the silicon system.

The scaling behavior has some striking differences in comparison with the same benchmarks
run on the PHYSnet cluster. First of all, speedup and runtimes are very consistent across runs,
with only a minimal variance across the whole range of processors. On a single node this is
similar to the results from the benchmarks run on the PHYSnet, but on the HLRN cluster
this also holds true across two nodes (for more than 96 processors). This is most likely due
to the HLRN cluster being equipped with better communication hardware, which is also the
reason for the speedup further increasing over two nodes, whereas in the benchmark on the
PHYSnet cluster the maximum speedup of around 20 was already achieved for 24 processors.

Another difference lies in the fact that the pool sizes 2 and 8 show a similar speedup with pool
size 16 being a bit worse.

This fact shows that while recommendations for parallelization parameters can be qualitatively
made based on system size, the optimal size and processor range can vary depending on the
compute cluster the calculations are run on.

34

IV.4 Comparison with calculations on the HLRN cluster

200 A

175 1

150 +

125 +

100 +

speedup S

75 A

50 1

25 1

0 25 50 75 100 125 150 175 200
number of processors N

Figure IV.15: Scalability utilizing k-point parallelization for the Si benchmarking system with
3 different sizes of processor pools run on the HLRN cluster. Across the whole range of processors,

calculations get faster when adding more processors. QUANTUM ESPRESSO compiled with Intel
Parallel Studio 2019u5, Intel MPI 2018.5, nd 1

. —e- 16 —e- 16 o o
1 30 A I \ o
60 {1 —e- 8 —e- 8 ! “"\‘/ o* ﬁ'
_] -e- 2 _ 254 -@- 2 "f ®
2 * §. ’\ ‘ o-9
Y iy v 201 e/ e e
v 40 1@ S
S "\\ = f/
2 iy £ 15 4 4
5 o o o33
ju 20 4 R\ ‘ = ...l'
D 10{ % e
[RN P
0 51
0 50 100 150 200 0 50 100 150 200

number of processors N number of processors N

Figure IV.16: Absolute runtime and wait time for the scalability test with k-point parallelization
for the Si benchmarking system run on the HLRN cluster. The wait time shows a different

behavior between running on one and two nodes. QUANTUM ESPRESSO compiled with Intel
Parallel Studio 2019u5, Intel MPT 2018.5, nd 1

35

IV Parallelization of electronic-structure calculations

200 A

175 A

150 A

125 A

100 A

speedup S

75 A

50 A

25 A

0 25 50 75 100 125 150 175 200
number of processors N

Figure IV.17: Scalability utilizing k-point parallelization for the TaS, benchmarking system
over a range of processor-pool sizes run on the HLRN cluster. Pool size 36 shows the best scaling
behavior. QUANTUM ESPRESSO compiled with Intel Parallel Studio 2019u5, Intel MPI 2018.5,
nd 1

Fig. IV.17 and IV.18 show the benchmarks for the TaSs system. This was only run a single
time, not averaged over multiple runs.

Interestingly, the upper bound for pool size is the same as for the calculations on the PHY Snet.
In both cases, bigger pool sizes perform better up to 36 processors, with more processors per
pool not showing better scaling. This suggests that this limit is not dependent on the compute
cluster, but instead a property of the TaSy system: Just looking at the PHYSnet cluster,
36 as an upper limit might allude to an interpretation involving the size of nodes, where 36
processors is just under 2 full nodes and everything more will be spread over at least 3 nodes,
with possibly more communication slowing down calculations. On the HLRN, the processor
counts per CPU and node are different, so an analogous interpretation would suggest that the
scaling gets better for pool sizes up to some multiple of 48 (the number of processors on one
CPU). This is not the case, the processor pool of size 48 already shows worse scaling than the
size 36.

This is an important result, as for the more expensive TaS, system the topology of the compute
cluster seems to not be important for the scaling behavior. This opens up the possibility of
using the PHYSnet not just for calculations but also for first finding the best parameters for a
particular system (so just running a few iterations) and then doing the real calculation on a
cluster like the HLRN.

While the speedup plots look very similar between the PHYSnet and the HLRN, the absolute
runtime in fig. V.18 shows a massive difference between the two clusters. While the minimal

36

IV.5 Conclusion: Parameters for optimal scaling

30001® _e- 18 36 24 ® -e- 18 36 24
\ _@- -@- 64 VvV —@- -9-
500 L " 8 48 -@- 2 . -@- 8 48 -@- 2
\ —e- 72 —_ §-e- 72
o % X 5- ~ &
= 20004 = e S N Ea
- \ *\ qE) \‘ ‘.’/.
£ 15001 % 5 47 o o SN
c \ = o s7 A Py
\ -0-06-06-0-0-0-0 © % &, 47 % Vo<
5 10004 Sl =31 o ;,3'-;’ v ®
4 4
] [Y Y v ’ [4
500 - T2 ety]
PR . P 2 y &
(]
0 50 100 150 200 0 50 100 150 200
number of processors N number of processors N

Figure IV.18: Absolute runtime and wait time for the scalability test with k-point parallelization
for the TaSs benchmarking system run on the HLRN cluster. The wait time is in a range of
around 2-6 % across all pool sizes and processors. QUANTUM ESPRESSO compiled with Intel
Parallel Studio 2019u5, Intel MPI 2018.5, nd 1

runtime achieved on the PHYSnet is about 5min, the minimal time needed on the HLRN
cluster is about 2min45s, so a time difference of factor 2.

IV.5 Conclusion: Parameters for optimal scaling

The benchmarks testing QUANTUM ESPRESSO’s PWscf module showed that the speedup
gained from parallelization is highly dependent on the specific system. While calculations on
the relatively inexpensive silicon benchmarking system gained performance just in a range up
to 24 processors and were faster by a factor of 2, the more expensive TaSs benchmarking system
benefitted more from parallelization itself and as such from all efforts improving parallelization.

Using the compilers and mathematical libraries from the Intel oneAPI package was shown to
improve scalability beyond a single node, with the maximum speedup at around 32 processors
for the TaS, benchmarking system. This value was then confirmed to be the best choice for
the size of processor pools in k-point parallelization not just on the PHYSnet cluster, but also
on the more capable HLRN cluster. Using linear-algebra parallelization had a negative impact
on calculations on the silicon system and no effect for calculations on the TaS; benchmarking
system.

A generalization for other systems beyond a qualitatively assessment that more expensive
system profit more from parallelization than smaller system is not possible, but this chapter
gives a guide on how to examine a system in order to get the optimal parameters.

37

V Parallelization of phonon calculations

The PHonon package enables calculations of phonon frequencies and eigenmodes. This chapter
examines the best ways to run PHonon calculations. The benchmarks are averaged over 10
runs.

V.1 Optimal parallelization parameters for phonon
calculations

As discussed in sec. 11.2.2, the PHonon package offers the same three parallelization levels as the
PWscf package, namely plane-wave, k-point and linear-algebra parallelization. Furthermore,
parallelization on g-points (so called image parallelization) can be used.

V.1.1 k point parallelization

In a first step, the same k-point parallelization benchmark as in sec. 1V.3.1 is run. This is
depicted in fig. V.1.

Interestingly, the result from the PWscf calculation on silicon from sec. IV.3.1 is not reproduced
here: the smallest pool size of 2 is not the one parallelizing best, but instead it is pool size
8. Furthermore, for more than 50 processors, even the biggest pool size 18 shows better
scaling than the pool size 2. The general picture is similar to PWscf benchmark with k-point
parallelization on the TaSs benchmarking system in sec. IV.3.1, as there is no optimal pool
size over the whole range of processors, instead some pool sizes seem to work best for some
ranges.

One possible conclusion to draw from the benchmarks in chapter IV is, that in general longer
runtime results in the calculation profiting more from parallelization and as such also from
bigger pool sizes. The phonon benchmark has a similar runtime to the PWscf benchmark
on TaSs shown in sec. IV.3.1, so following this argumentation a similar scaling behavior is
expected. Comparison in wait time reveals the differences in the quality of parallelization
between the two systems, which results in the observed different scaling. Whereas the PWscf
benchmark on TaS,; had wait time not exceeding about 8 % of the wall time, the wait time
shown in fig. V.2 between 10 % and 50 %.

A possible explanation for these differences between the two kinds of calculation can be found
in how the time is actually spent during the calculation (which can be found in the QUANTUM
ESPRESSO output files): In the case of the phonon calculation on silicon, the time of one
iteration is on the scale of seconds, whereas one iteration for the PWscf calculation on TaSs
is about 1 min. This means that the proportion of time spent on the distribution of data is

39

V' Parallelization of phonon calculations

speedup S

30 40 50
number of processors N

Figure V.1: Scalability utilizing k-point parallelization for the Si benchmarking system with

three sizes of processor pools. Best scaling behavior is seen for pool size 8. QUANTUM ESPRESSO
compiled with Intel oneAPI 2021.4, nd 1

® —-0- —e- b
f ®- 18 ®- 18 /, \,.__.__’
‘| -0- 8 40 {4 —-®- 8 ~0=¢
6000 1 -0- 2 - -0- 2 4
0 1 1) ’
— 1 & ® /
~ i 30 ’ ~
g a0001 ¢ £ /e 7 Ter ™,
'g \ i II /.--‘ ¢
5 ‘, £ 20+ i A
—_ -, \.
20004 e + PrARL g
Tecgeg=esg le-0-0|] oY
B X o ou-CF S ‘I ¢
0 20 40 60 80 0 20 40 60 80

number of processors N number of processors N

Figure V.2: Absolute runtime and wait time for the scalability test utilizing k-point paralleliza-
tion for the Si benchmarking system with three sizes of processor pools. Wait time is highest for

the pool size which parallelizes worst, with the other two having lower wait times. QUANTUM
ESPRESSO compiled with Intel oneAPT 2021.4, nd 1

bigger for the phonon calculation on silicon compared to the PWscf calculation on TaS,, which

introduces wait times.

From the result of this benchmark, the parameters for the image parallelization in sec. V.1.3
can be set: the pool size will be fixed at 8.

40

V.1 Optimal parallelization parameters for phonon calculations

V.1.2 Linear-algebra parallelization

40 1 -@- nd_auto

-®- nd_4
351 nd_1
30 A nd_16

speedup S

0 5 10 15 20 25 30 35 40
number of processors N

Figure V.3: Scalability utilizing linear-algebra parallelization for the Si benchmarking system.
The scaling is the same across the whole range of processors for every linear-algebra group size.
QUANTUM ESPRESSO compiled with Intel oneAPI 2021.4, nk 1

Fig. V.3 shows that using linear-algebra parallelization has no significant impact on the speedup.
This is again in contrast to the PWscf results from sec. 1V.3, where using linear-algebra slowed
down the calculation and more similar to the PWscf calculation on TaSs.

As such, linear-algebra parallelization will not be used in the benchmarks for image paralleliza-
tion.

V.1.3 Image parallelization

When using image parallelization, QUANTUM ESPRESSO outputs a separate time report for
every image, so one additional step is needed in the analysis: While the total runtime of a
calculation is determined by the longest running image, the variation of times between images
is important to judge how well the work between images is distributed. This is depicted in fig.
V.4.

As the standard deviation between images is just 20-60s, which amounts to about 10% of
the average runtime, good load balancing between images can be assumed for the silicon
benchmarking system.

With the maximum time across images, speedup is then calculated, shown in fig. V.5.

41

V' Parallelization of phonon calculations

-e- 8
1400 - Q\ —e- 24
\‘ -0- 2
1200 1
\
\
— 1000 A \
0 \
(0]
£ 800 \
€ \
S \
600 7'\\
N, f"\
e~ Sy
UET S
400 o - % =
‘~~__~~ “\..___.._—.——"
CE
2004000 TS m==aa '

25 50 75 100 125 150 175 200
number of processors N

Figure V.4: Average runtime across images for the scalability test utilizing image and k-point
parallelization on the Si benchmarking system with three values of ni. The transparent line
shows standard deviation across images, which shows that all images need around the same time

for their respective calculations. QUANTUM ESPRESSO compiled with Intel oneAPT 2021.4, nk,
ni chosen such that poolsize = 8, nd 1

200 ° °
254 -@- 8 I' N1 \‘ 5 Ja \\.
-@- 24 I \./ \./
150 — -e-2 |/
0 X 20 A 1
a — 1
=] v]
3 1001 £ 8-o il N
o o i Il =
& g 1° 1 L
50 4 2 ,’ Vi)
o ’
104 @ vaa
/
0 1 ¢
0 50 100 150 200 50 100 150 200
number of processors N number of processors N

Figure V.5: Speedup and wait time calculated from the longest running image for the scalability
test utilizing image and k-point parallelization on the Si benchmarking system with three values
of ni. Using more images leads to the linear slope of the speedup continuing over more processors.
The wait time is lowest for every first data point and lower than without image parallelization
in general. QUANTUM ESPRESSO compiled with Intel oneAPI 2021.4, nk, ni chosen such that
poolsize = 8, nd 1

42

V.2 Phonon calculations on TaS,

Table V.1: Benchmark values for phonon calculations of TaS> in the charge-density-wave phase,
run on 180 processors

runtime wait time

pool size 18 3044min 16 %
pool size 36 2020min 7.4 %

The speedup shows that using image parallelization helps the phonon calculations scale over
more processors than just using k-point parallelization. Even just using 2 images almost
doubles the maximal achieved speedup in fig. V.1. This behavior doesn’t extend across the
whole range of processors, but using more images can partially lift this problem.

The wait time (also calculated from the longest running image) shown in fig. V.2 is particularly
good for every first data point, so in cases where only image parallelization without additional
k-point parallelization is applied. As an example, for 64 processors, 8 images is Ne/n;, = 8, so
the pool size is already 8 as required and the parameter nk is chosen to be 1. So at least for
the silicon system it seems to be advisable to choose the parameter ni as large as possible, so
that nk can be chosen as small as possible while keeping a pool size of 8.

V.2 Phonon calculations on TaS,

The results from the last section can be used to estimate good parallelization parameters for a
phonon calculation at the I" point for TaSs in the charge-density-wave phase. The calculations
were run on 180 processors, once with the previous established optimal pool size of 36 and
once with a pool size of 18 for comparison. The relevant benchmark values for this calculation
are listed in tab. V.1.

In this calculation the need for a good choice of parallelization parameters becomes especially
clear: while the runs share an identical number of processors, the different choice of the
parameter nk results in a runtime saving of 17 h.

V.3 Conclusion: Parameters for optimal scaling

The benchmarks on QUANTUM ESPRESSO’s PHonon module showed that calculation on the
silicon system profited more from bigger k-point pools than PWscf calculations. Linear-algebra
parallelization was shown to have no impact on calculations.

Image parallelization in combination with k-point parallelization led to very good scaling across
a wide range of processors. Best results were found when the processors were only split up by
image parallelization.

Phonon calculations on TaS, in the charge-density-wave phase were then carried out, with the
best time reached for a pool size of 36.

43

VI Phonon mediated tunneling into
TaSz

VI.1 Amplitude mode in TaS, charge density wave

The results of the phonon calculation at the I" point carried out in sec. V.2 are 81 phonon
modes with respective energies and nucleic displacements. One particular mode has the effect
of displacing the atoms in the direction of the symmetric phase, thus changing the amplitude
of the charge density wave. This is depicted in fig. VI.1. The amplitude mode has an energy
of Ey = 10.6 meV.

V1.2 Phonon mediated tunneling into Graphene

VI1.2.1 Scanning Tunneling Spectroscopy

The description in this section follows the textbook “Surface Science” by Oura et al. [36].

In an STM setup, a ideally atomically sharp metallic tip is placed close to the probed surface
(around 5 — 10 A), such that electrons can tunnel between the tip and the surface. By applying
a bias voltage V' between the tip and the surface, a current enabled by the tunneling process

8 @) 8 @)
o Q9 P
& L) L)

Q Q o Q Qo
-] » - 9 » @

Q 5) Q Q &) Qo

o) 8 ®) 8
Q d Q (o} d Q
O & L)

Q Qo 5) Q Q 0

Figure VI.1: Amplitude mode in TaS» charge density wave, visualized from QUANTUM
ESPRESSO calculation. Gray dots are atoms in the symmetric phase, yellow/black dots are
the Tantalum/Sulfur atoms in the charge-density-wave phase. The orange arrows show the
displacement vectors.

45

VI Phonon mediated tunneling into TaS»

Figure VI1.2: Inelastic tunneling mechanism involving graphene phonon modes near the K point
in reciprocal space. Reprinted by permission from Nature Publishing Group: Nature Physics [37],
© 2008

flows through the gap. This tunneling current is sharply dependent on the size of the gap, so a
extremely high vertical resolution can be achieved. Also due to this fact, 90 % of the tunneling
current flows through the the single tip atom closest to the surface, so that very high lateral
resolution is also possible. An STM can thus be used to map the topography of a surface with
atomic resolution.

When varying the bias voltage V', an STM can also be used to obtain measurements of the
density of electronic states in the material, the Scanning Tunneling Spectroscopy (STS) mode
of operation. This is due to the tunneling current being determined by summing over electron
states in an energy interval defined by the bias voltage. In general, a simple interpretation
of STS data is not possible and needs backing in theoretical calculations. This is due to the
tunneling current depending on the tunneling matrix element between the state at the tip and
the states in the probe, so the tunneling current can be suppressed if the states in the probe
don’t overlap with the tip.

VI1.2.2 Phonon mediated tunneling into Graphene

In a 2008 STS measurement on graphene, a symmetric gap feature around the Fermi level
was measured [37]. This gap is an example of the problems with interpretation of STS data
explained in sec. VI.2.1, as it is not a feature of the density of states of graphene, but a result
of the tunneling current being suppressed for the range of bias voltages in the gap.

The underlying mechanism, confirmed with DFT calculations by Wehling et al. [38] is as
follows: generally, electrons can elastically tunnel into graphene at the Fermi level near the
K point. This elastic process is suppressed because the wave function at the initial state,
i.e. the wave functions at the tip, have a momentum distribution centered at k| = 0, so the
tunneling matrix element is suppressed for large k [39]. For electron energies outside the gap,
an inelastic tunneling channel opens, where the electrons first tunnels into the ¢* band and
then transitions into an available K point through emission of a K’ point phonon (pictured in
fig. VI.2).

46

VI.3 Phonon mediated tunneling into TaSs

1.0

— SYM

cbw
0.8

0.6 1

0.4

0.2

Energy (eV)

0.01

—02 f

—0.4

DOS (arb. units)

Figure VI1.3: Density of states for TaS» in the charge density wave (CDW) and undistorted
(SYM) phase. The data was kindly provided by Dr. Jan Berges and has been calculated in
QuaNTUM ESPRESSO with the 2D tetrahedron method using 3602 (1080%) k points for the CDW
(SYM) structure

V1.3 Phonon mediated tunneling into TaS-»

In a 2019 paper by Hall et al. [1], a similar gap feature with a width of 2A = (32 &+ 9) meV
was reported in an STS measurement on TaSs.

This gap is attributed to partial gapping to the formation of the charge density wave, as
explained in the one-dimensional case in sec. III.2.

The density of states depicted in fig. VI.3 shows no symmetric gap around the Fermi level,
hence the explanation by partial gapping is not confirmed. An alternative explanation can
be that the same process found in graphene in sec. VI.2.2 produces the gap in TaS;. The
gap A = (16.0 £ 4.5) meV could be explained with an inelastic tunneling process involving
the amplitude mode near the I' point with an energy around the calculated Fy = 10.6 meV.
Confirmation of this explanation would need an ab initio model of the electron-phonon
interaction and its effects on the tunneling, similarly to graphene [38].

47

VII Conclusion

The benchmarks on QUANTUM ESPRESSO’s PWscf and PHonon modules carried out in this
thesis show how system size, compilers and parallelization parameters interplay to influence
scaling of calculation across multiple processors. TaSsy, the system with longer times per
iteration has a different scaling behavior to silicon, the system with shorter times per iteration:
the former shows linear speedup for significantly more processors than the latter. Using the
Intel oneAPI instead of the OpenMPI module leads to different scaling behavior on silicon,
while minimal runtime stays the same. This is due to the slightly longer single core performance
with Intel oneAPI carrying over into calculation of the speedup. In calculations on TaSs, using
Intel oneAPI compilers leads to the calculations scaling well not just on a single node, but on
almost two full nodes.

The different ranges for the optimal number of processors carries over to the choice of parameters
for QuanTUM ESPRESSO’s k-point parallelization. For calculations on both systems, the
optimal size of processor pools for k-point parallelization is near the number of processors
where the speedup does not follow ideal scaling anymore. For the system sizes at hand, utilizing
linear-algebra parallelization has no impact in most cases and slows down the calculation in the
case of electronic structure calculations on silicon. In phonon calculations, using a combination
of k-point and image parallelization leads to the calculations scaling over a wide range of
processors.

The calculated phonon modes and frequencies on TaSs in the charge-density-wave phase give a
possible explanation for a gap around the Fermi level observed in an STS experiment on the
material. This gap forms via an inelastic tunneling process involving the amplitude mode near
the I' point opening up just for electron energies higher than that of this phonon mode. While
the energy does not fit perfectly to the size of the gap, the symmetric form of the gap would
be explained. Further theoretical work is needed to confirm this proposition.

49

Bibliography

1]

J. Hall et al. “Environmental Control of Charge Density Wave Order in Monolayer
2H-TaS2”. In: ACS Nano 13.9 (Sept. 24, 2019). Publisher: American Chemical Society,
pp- 10210-10220. 1sSN: 1936-0851. DOI: 10.1021/acsnano.9b03419.

P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev. 136.3 (Nov.
1964). Publisher: American Physical Society, B864-B871. DOI: 10.1103/PhysRev.136.
B864.

W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and Correlation
Effects”. In: Phys. Rev. 140.4 (Nov. 1965). Publisher: American Physical Society, A1133-
A1138. por: 10.1103/PhysRev.140.A1133.

R. O. Jones. “Density functional theory: Its origins, rise to prominence, and future”. In:
Rev. Mod. Phys. 87.3 (Aug. 2015). Publisher: American Physical Society, pp. 897-923.
DOI: 10.1103/RevModPhys.87.897.

P. Giannozzi et al. “QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials”. In: Journal of Physics: Condensed Matter
21.39 (Sept. 2009). Publisher: IOP Publishing, p. 395502. DoI: 10.1088/0953-8984/21/
39/395502.

P. Giannozzi et al. “Advanced capabilities for materials modelling with Quantum
ESPRESSO”. In: Journal of Physics: Condensed Matter 29.46 (Oct. 2017). Publisher:
IOP Publishing, p. 465901. DOI: 10.1088/1361-648x/aa8f79.

R. G. Dickinson and L. Pauling. “THE CRYSTAL STRUCTURE OF MOLYBDENITE”.
In: Journal of the American Chemical Society 45.6 (June 1, 1923). Publisher: American
Chemical Society, pp. 1466-1471. 1SSN: 0002-7863. DOI: 10.1021/3ja01659a020.

K. S. Novoselov et al. “T'wo-dimensional atomic crystals”. In: Proceedings of the National
Academy of Sciences 102.30 (2005), pp. 10451-10453. poOI: 10.1073/pnas.0502848102.
D. N. Basov, R. D. Averitt, and D. Hsieh. “Towards properties on demand in quantum
materials”. In: Nature Materials 16.11 (Nov. 1, 2017), pp. 1077-1088. 1sSN: 1476-4660.
DOI: 10.1038/nmat5017.

M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen der
Physik 389.20 (Jan. 1, 1927). Publisher: John Wiley & Sons, Ltd, pp. 457-484. 1SSN:
0003-3804. DOT1: 10.1002/andp.19273892002.

N. Marzari. “Ab-initio Molecular Dynamics for Metallic Systems”. PhD thesis. University
of Cambridge, 1996.

R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge
University Press, 2004. Do1: 10.1017/CB09780511805769.

J. Harris. “Adiabatic-connection approach to Kohn-Sham theory”. In: Phys. Rev. A
29.4 (Apr. 1984). Publisher: American Physical Society, pp. 1648-1659. DOI: 10.1103/
PhysRevA.29.1648.

51

https://doi.org/10.1021/acsnano.9b03419
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648x/aa8f79
https://doi.org/10.1021/ja01659a020
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1038/nmat5017
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1017/CBO9780511805769
https://doi.org/10.1103/PhysRevA.29.1648
https://doi.org/10.1103/PhysRevA.29.1648

Bibliography

[14] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized Gradient Approximation Made
Simple”. In: Phys. Rev. Lett. 77.18 (Oct. 1996). Publisher: American Physical Society,
pp- 3865-3868. DOI: 10.1103/PhysRevLett.77.3865.

[15] D. R. Hamann, M. Schliiter, and C. Chiang. “Norm-Conserving Pseudopotentials”. In:
Phys. Rev. Lett. 43.20 (Nov. 1979). Publisher: American Physical Society, pp. 1494-1497.
DOI: 10.1103/PhysRevLett.43.1494.

[16] S. Baroni et al. “Phonons and related crystal properties from density-functional per-
turbation theory”. In: Rev. Mod. Phys. 73.2 (July 2001). Publisher: American Physical
Society, pp. 515-562. DOI: 10.1103/RevModPhys.73.515.

[17] R. P. Feynman. “Forces in Molecules”. In: Phys. Rev. 56.4 (Aug. 1939). Publisher:
American Physical Society, pp. 340-343. DOI: 10.1103/PhysRev.56.340.

[18] P. D. DeCicco and F. A. Johnson. “The Quantum Theory of Lattice Dynamics. IV”.
In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 310.1500 (1969). Publisher: The Royal Society, pp. 111-119. 1sSN: 00804630.
URL: http://www.jstor.org/stable/2416303 (visited on 06/24/2022).

[19] R. M. Pick, M. H. Cohen, and R. M. Martin. “Microscopic Theory of Force Constants in
the Adiabatic Approximation”. In: Phys. Rev. B 1.2 (Jan. 1970). Publisher: American
Physical Society, pp. 910-920. por: 10.1103/PhysRevB.1.910.

[20] S. Baroni, P. Giannozzi, and A. Testa. “Green’s-function approach to linear response in
solids”. In: Phys. Rev. Lett. 58.18 (May 1987). Publisher: American Physical Society,
pp- 1861-1864. DOI: 10.1103/PhysRevLett.58.1861.

[21] X. Gonze. “Adiabatic density-functional perturbation theory”. In: Phys. Rev. A 52.2 (Aug.
1995). Publisher: American Physical Society, pp. 1096-1114. DOI: 10.1103/PhysRevA.
52.1096.

[22] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists
and Engineers. Oth ed. CRC Press, July 2, 2010. 1SBN: 978-1-4398-1193-1. po1: 10.1201/
EBK1439811924.

[23] G. M. Amdahl. “Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference. AFIPS ’67 (Spring). event-place: Atlantic City, New Jersey. New York, NY,
USA: Association for Computing Machinery, 1967, pp. 483-485. 1SBN: 978-1-4503-7895-6.
DOI: 10.1145/1465482.1465560.

[24] Quantum ESPRESSO User’s Guide (v. 7.0). URL: https://www.quantum-espresso.
org/documentation/ (visited on 05/23/2022).

[25] PWscf User’s Guide (v. 7.0). URL: https://www.quantum-espresso.org/documentation/
package-specific-documentation/ (visited on 05/23/2022).

[26] PHonon User’s Guide (v. 7.0). URL: https://www.quantum-espresso.org/documentation/
package-specific-documentation/ (visited on 05/23/2022).

[27) Y. J. Chabal, ed. Fundamental Aspects of Silicon Oxidation. Springer Berlin Heidelberg,
2001. por: 10.1007/978-3-642-56711-7.

[28] D. R. Hamann. “Erratum: Optimized norm-conserving Vanderbilt pseudopotentials [Phys.
Rev. B 88, 085117 (2013)]”. In: Phys. Rev. B 95.23 (June 2017). Publisher: American
Physical Society, p. 239906. DOI: 10.1103/PhysRevB. 95.239906.

[29] A. Kokalj. “XCrySDen—a new program for displaying crystalline structures and electron
densities”. In: Journal of Molecular Graphics and Modelling 17.3 (1999). Code available

52

https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.43.1494
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRev.56.340
http://www.jstor.org/stable/2416303
https://doi.org/10.1103/PhysRevB.1.910
https://doi.org/10.1103/PhysRevLett.58.1861
https://doi.org/10.1103/PhysRevA.52.1096
https://doi.org/10.1103/PhysRevA.52.1096
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1201/EBK1439811924
https://doi.org/10.1145/1465482.1465560
https://www.quantum-espresso.org/documentation/
https://www.quantum-espresso.org/documentation/
https://www.quantum-espresso.org/documentation/package-specific-documentation/
https://www.quantum-espresso.org/documentation/package-specific-documentation/
https://www.quantum-espresso.org/documentation/package-specific-documentation/
https://www.quantum-espresso.org/documentation/package-specific-documentation/
https://doi.org/10.1007/978-3-642-56711-7
https://doi.org/10.1103/PhysRevB.95.239906

Bibliography

[30]

[31]

from http://www.xcrysden.org/., pp. 176-179. 1sSN: 1093-3263. DOI: https://doi.org/
10.1016/81093-3263(99)00028-5.

J. A. Wilson and A. D. Yoffe. “The transition metal dichalcogenides discussion and
interpretation of the observed optical, electrical and structural properties”. In: Advances
in Physics 18.73 (1969), pp- 193-335. DOI: 10.1080/00018736900101307.

S. Nagata et al. “Superconductivity in the layered compound 2H-TaS2”. In: Journal
of Physics and Chemistry of Solids 53.10 (1992), pp. 1259-1263. 1ssN: 0022-3697. DOTI:
https://doi.org/10.1016/0022-3697(92)90242-6.

J. A. Wilson, F. J. Di Salvo, and S. Mahajan. “Charge-Density Waves in Metallic, Layered,
Transition-Metal Dichalcogenides”. In: Phys. Rev. Lett. 32.16 (Apr. 1974). Publisher:
American Physical Society, pp. 882-885. DOI: 10.1103/PhysRevLett.32.882.

E. Navarro-Moratalla et al. “Enhanced superconductivity in atomically thin TaS2”. In:
Nature Communications 7.1 (Apr. 2016), p. 11043. 1SSN: 2041-1723. Do1: 10. 1038/
ncomms11043.

G. Griiner. “The dynamics of charge-density waves”. In: Rev. Mod. Phys. 60.4 (Oct.
1988). Publisher: American Physical Society, pp. 1129-1181. DOI: 10.1103/RevModPhys .
60.1129.

C. Hartwigsen, S. Goedecker, and J. Hutter. “Relativistic separable dual-space Gaussian
pseudopotentials from H to Rn”. In: Phys. Rev. B 58.7 (Aug. 1998). Publisher: American
Physical Society, pp. 3641-3662. DOI: 10.1103/PhysRevB.58.3641.

K. Oura et al. Surface Science. Springer Berlin Heidelberg, 2003. DO1: 10.1007/978-3~
662-05179-5.

Y. Zhang et al. “Giant phonon-induced conductance in scanning tunnelling spectroscopy
of gate-tunable graphene”. In: Nature Physics 4.8 (Aug. 1, 2008), pp. 627-630. 1SSN:
1745-2481. DOI: 10.1038/nphys1022.

T. O. Wehling et al. “Phonon-Mediated Tunneling into Graphene”. In: Phys. Rev. Lett.
101.21 (Nov. 2008). Publisher: American Physical Society, p. 216803. pOI: 10.1103/
PhysRevLett.101.216803.

L. Vitali et al. “Phonon and plasmon excitation in inelastic electron tunneling spectroscopy
of graphite”. In: Phys. Rev. B 69.12 (Mar. 2004). Publisher: American Physical Society,
p- 121414. po1: 10.1103/PhysRevB.69.121414.

53

https://doi.org/https://doi.org/10.1016/S1093-3263(99)00028-5
https://doi.org/https://doi.org/10.1016/S1093-3263(99)00028-5
https://doi.org/10.1080/00018736900101307
https://doi.org/https://doi.org/10.1016/0022-3697(92)90242-6
https://doi.org/10.1103/PhysRevLett.32.882
https://doi.org/10.1038/ncomms11043
https://doi.org/10.1038/ncomms11043
https://doi.org/10.1103/RevModPhys.60.1129
https://doi.org/10.1103/RevModPhys.60.1129
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1007/978-3-662-05179-5
https://doi.org/10.1007/978-3-662-05179-5
https://doi.org/10.1038/nphys1022
https://doi.org/10.1103/PhysRevLett.101.216803
https://doi.org/10.1103/PhysRevLett.101.216803
https://doi.org/10.1103/PhysRevB.69.121414

Acknowledgement

I thank my supervisor Professor Tim Wehling for allowing me to get a glimpse into the
fascinating research he and his research group do and for the opportunity to learn a lot about
condensed matter in the past 5 months.

I also thank Michael Winter and Jan Berges for direct support, scripts, data, IXTEX templates
and much more as well as the whole group "Computational Condensed Matter Theory” for
welcoming me into their open and productive atmosphere.

I thank all developers of free software, especially the ones I used in this thesis: QUANTUM
ESPRESSO, ITEX, PYTHON, NUMPY, MATPLOTLIB, GIT.

I thank my family for support through my all my studies up until now.

I especially thank Liv for massive amounts of love and support during the writing of this thesis.

55

	Motivation
	Ab initio methods for materials modeling
	Density Functional Theory
	Hohenberg-Kohn theorems
	Kohn-Sham equations
	Pseudopotentials and basis set

	Density Functional Perturbation Theory
	Sternheimer equation and Hellman-Feynman theorem
	Lattice vibrations from electronic structure
	Density Functional Perturbation Theory

	Computational Details
	Parallel computing and scalability
	Quantum ESPRESSO
	Compilation of Quantum ESPRESSO
	Parallelization capabilities implemented in Quantum ESPRESSO
	Evaluating the scalability of Quantum ESPRESSO calculations

	Hardware configuration of the PHYSnet cluster

	Examined systems
	Silicon
	TaS2
	Charge-density waves
	Computational parameters

	Parallelization of electronic-structure calculations
	First scaling tests
	Testing different compilers and mathematical libraries
	Using the parallelization parameters of Quantum ESPRESSO
	k point parallelization
	Linear-algebra parallelization

	Comparison with calculations on the HLRN cluster
	Conclusion: Parameters for optimal scaling

	Parallelization of phonon calculations
	Optimal parallelization parameters for phonon calculations
	k point parallelization
	Linear-algebra parallelization
	Image parallelization

	Phonon calculations on TaS2
	Conclusion: Parameters for optimal scaling

	Phonon mediated tunneling into TaS2
	Amplitude mode in TaS2 charge density wave
	Phonon mediated tunneling into Graphene
	Scanning Tunneling Spectroscopy
	Phonon mediated tunneling into Graphene

	Phonon mediated tunneling into TaS2

	Conclusion
	Bibliography
	Acknowledgement

